Структура и свойства твердых тканей зуба

Структура и свойства твердых тканей зуба

Эмаль (enamelum). Эта ткань, покрывающая коронку зуба, является самой твердой в организме (250—800 ед. Виккер-са). На жевательной поверхности ее толщина достигает 1,5— 1,7 мм, на боковых поверхностях она значительно тоньше и сходит на нет к шейке, в месте соединения с цементом.

Эмаль (enamelum). Эта ткань, покрывающая коронку зуба, является самой твердой в организме (250—800 ед. Виккер-са). На жевательной поверхности ее толщина достигает 1,5— 1,7 мм, на боковых поверхностях она значительно тоньше и сходит на нет к шейке, в месте соединения с цементом.

Структура эмали. Основным структурным образованием эмали являются эмалевые призмы диаметром 4—б мкм. Длина призмы соответствует толщине слоя эмали и даже превышает ее благодаря извилистому направлению. Эмалевые призмы, концентрируясь в пучки, образуют S-образные изгибы. Вследствие этого на шлифах эмали выявляется оптическая неоднородность (темные или светлые полосы): в одном участке призмы срезаны в продольном направлении, в другом — в поперечном (полосы Гунтера—Шрегера) (рис. 3.16). Кроме того, на шлифах

Эмалевая призма имеет поперечную исчерченность, которая отражает суточный ритм осложнений минеральных солей. Сама призма в поперечном сечении, в большинстве случаев, имеет аркадообразную форму или форму чешуи, но может быть полигональной, округлой или гексагональной.
Ранее считали, что вокруг каждой призмы имеется оболочка, содержащая большое количество органического вещества. С помощью более современных методик, в частности электронной микроскопии, установлено, что межпризменное вещество эмали состоит из таких же кристаллов, как и сама призма, но отличается их ориентацией. Органическое вещество эмали обнаруживается в виде тончайших фибриллярных структур. Существует мнение, что органические волокна определяют ориентацию кристаллов призмы эмали.

В эмали зуба, кроме указанных образований, встречаются ламеллы, пучки и веретена (рис. 3.18). Ламеллы (пластинки) проникают в эмаль на значительную глубину, эмалевые пучки — на меньшую. Эмалевые веретена — отростки одонтобластов — проникают в эмаль через дентино-эмалевое соединение.

Основной структурной единицей призмы считаются кристаллы апатитоподобного происхождения, которые плотно прилежат друг к другу, но располагаются под углом. Считают, что размеры кристаллов с возрастом увеличиваются. Структура кристалла обусловлена величиной элементарной ячейки. Кристаллы гидроксиапатита и фторапатита имеют свои параметры.

Химический состав. Г. Н. Пахомов (1982), исследовавший структуру кристаллов, считает, что эмаль зубов состоит из апатитов многих типов, однако основным является гидрокси-апатит — Са10(РО4)6(ОН)2. Неорганическое вещество в эмали представлено (%): гидроксиапатитом — 75,04; карбонатапа-титом — 12,06; хлорапатитом — 4,39; фторапатитом — 0,63; карбонатом кальция — 1,33; карбонатом магния — 1,62. В составе химических неорганических соединений кальций составляет 37 %, а фосфор — 17 %.

Состояние эмали зуба во многом определяется соотношением Са/Р как элементов, составляющих основу эмали зуба. Это соотношение непостоянно и может изменяться под воздействием ряда факторов. Здоровая эмаль молодых людей имеет более низкий коэффициент Са/Р, чем эмаль зубов взрослых; этот показатель уменьшается также при деминерализации эмали. Более того, возможны существенные различия соотношения Са/Р в пределах одного зуба, что послужило основанием для утверждения о неоднородности структуры эмали зуба и, следовательно, о неодинаковой подверженности различных участков поражению кариесом.

Для апатитов, каковыми являются кристаллы эмали зуба, молярное соотношение Са/Р составляет 1,67. Однако, как это установлено в настоящее время, соотношение этих компонентов может изменяться как в сторону уменьшения (1,33), так и в сторону увеличения (2,0). При соотношении Са/Р 1,67 разрушение кристаллов происходит при выходе 2 ионов Са2+, при соотношении 2,0 гидроксиапатит способен противостоять разрушению до замещения 4 Са2+, тогда как при соотношении Са/Р 1,33 его структура разрушается. По существующим представлениям, коэффициент Са/Р можно использовать для оценки состояния эмали зуба.

В результате многочисленных исследований, проведенных как в нашей стране, так и за рубежом, установлено, что микроэлементы в эмали располагаются неравномерно. В наружном слое отмечается большое содержание фтора, свинца, цинка, железа при меньшем содержании в этом слое натрия, магния, карбонатов. Равномерно по слоям распределяются стронций, медь, алюминий, калий.

Каждый кристалл эмали имеет гидратный слой связанных ионов (ОН»), образующихся на поверхности раздела кристалл — раствор. Считают, что благодаря гидратному слою осуществляется ионный обмен, который может протекать по гетероионному механизму обмена, когда ион кристалла замещается другим ионом среды, и по изоионному — когда ион кристалла замещается таким же ионом раствора. В настоящее время установлено, что кроме связанной воды (гидратная оболочка кристаллов) в эмали имеется свободная вода, располагающаяся в микропространствах. Общий объем воды в эмали составляет 3,8 %. Первое упоминание о жидкости, находящейся в твердых тканях зуба, относится к 1928 г. В дальнейшем стали дифференцировать зубную жидкость, которая содержится в дентине, от эмалевой жидкости, заполняющей микропространства, объем которых составляет 0,1—0,2 % от объема эмали. В исследованиях на удаленных зубах человека с использованием специальной методики подогрева показано, что через 2—3 ч после начала опыта на поверхности эмали образуются капельки «эмалевой жидкости». Движение жидкости обусловлено капиллярным механизмом, а по жидкости диффундируют молекулы и ионы. Эмалевая жидкость играет биологическую роль не только в период развития эмали, но и в сформированном зубе, обеспечивая ионный обмен.

Органическое вещество эмали представлено белками, липидами и углеводами. В белках эмали определены следующие фракции: растворимая в кислотах и ЭДТА — 0,17 %, нерастворимая — 0,18 %, пептиды и свободные аминокислоты — 0,15 %. По аминокислотному составу эти белки, общее количество которых составляет 0,5 %, имеют признаки кератинов. Наряду с белком в эмали обнаружены липиды (0,6 %), цитраты (0,1 %), полисахариды (1,65 мг углеводов на 100 г; эмали).

Таким образом, в составе эмали присутствуют: неорганические вещества — 95 %, органические — 1,2 % и вода — 3,8 %. В соответствии с данными других авторов, содержание органических веществ достигает 3 %.

Функции эмали зуба. Эмаль — это бессосудистая и самая твердая ткань организма. Кроме того, эмаль остается относительно неизменной в течение всей жизни человека.

Указанные свойства объясняются функцией, которую она выполняет — защищает дентин и пульпу от внешних механических, химических и температурных раздражителей.

Только благодаря этому зубы выполняют свое назначение — откусывают и измельчают пищу. Структурные особенности эмали приобретены в процессе филогенеза.

Явление проницаемости эмали зуба осуществляется благодаря смыванию зуба (эмали) снаружи ротовой жидкостью, а со стороны пульпы — тканевой и наличию пространств в эмали, заполненных жидкостью. Возможность проникновения в эмаль воды и некоторых ионов известна с конца прошлого и начала нашего столетия. Так, С. F. Bedecker (1996) утверждал, что зубная лимфа может проходить через эмаль, нейтрализуя молочную кислоту и постепенно увеличивая плотность за счет содержащихся в ней минеральных солей. В настоящее время проницаемость эмали изучена довольно подробно, что позволило пересмотреть ряд ранее существовавших представлений. Если ранее считали, что вещества в эмаль поступают по пути пульпа — дентин — эмаль, то в настоящее время не только установлена возможность поступления веществ в эмаль из слюны, но и доказано, что этот путь является основным (рис. 3.19). Эмаль проницаема в обоих направлениях: от поверхности эмали к дентину и пульпе и от пульпы к дентину и поверхности эмали. На этом основании эмаль зуба считают полупроницаемой мембраной. L. S. Fosdicr с соавт. (1959) указывают, что проницаемость — главный фактор созревания эмали зубов после прорезывания. По их мнению, в зубе проявляются обычные законы диффузии. При этом вода (эмалевая жидкость) проходит со стороны малой молекулярной концентрации в сторону высокой, а молекулы и диссоциированные ионы — со стороны высокой концентрации в сторону низкой. Иначе говоря, ионы кальция перемещаются из слюны, которая пересыщена ими, в эмалевую жидкость, где их концентрация низкая.

В настоящее время имеются бесспорные доказательства проникновения в эмаль и дентин зуба из слюны многих неорганических и органических веществ. Показано, что при нанесении на поверхность интактной эмали раствора радиоактивного кальция (45Са) он уже через 20 мин обнаруживался в поверхностном слое. При более длительном контакте раствора с зубом 45Са проникал на всю глубину эмали до эмалево-дентинного соединения. Аналогичными исследованиями установлено включение радиоактивного фосфора в дентин и эмаль интактного зуба животного после внутривенного введения или аппликации раствора Na2HP32O4 на поверхность зуба.

Выявленные закономерности проникновения кальция и фосфора в эмаль зуба из слюны послужили теоретической предпосылкой для разработки метода реминерализации эмали, применяемого в настоящее время с целью профилактики и лечения на ранней стадии кариеса.

В настоящее время установлено, что в эмаль зуба из слюны проникают многие неорганические ионы, причем некоторые из них обладают высокой степенью проникновения. Так, при нанесении раствора радиоактивного йодида калия (К1311) на поверхность интактных клыков кошки он через 2 ч был обнаружен в щитовидной железе.

Длительное время считалось, что органические вещества не проникают в эмаль зуба. Однако при помощи радиоактивных изотопов было установлено внедрение в эмаль, и даже дентин, аминокислот, витаминов, токсинов через 2 ч после нанесения их на неповрежденную поверхность зубов собаки.

В настоящее время изучены некоторые закономерности этого важного для эмали явления. Установлено, что уровень ее проницаемости может изменяться под воздействием ряда факторов. Так, этот показатель снижается с возрастом. Электрофорез, ультразвуковые волны, низкое значение рН усиливают проницаемость эмали. Она увеличивается также под воздействием фермента гиалуронидазы, количество которой в полости рта увеличивается при наличии микроорганизмов, зубного налета. Еще более выраженное изменение проницаемости эмали наблюдается, если к зубному налету имеет доступ сахароза. В значительной мере степень поступления ионов в эмаль зависит от их характеристик (рис. 3.20). Одновалентные ионы обладают большей проникающей способностью, чем двухвалентные. Важное значение имеют заряд иона, рН среды, активность ферментов и др.
Особого внимания заслуживает изучение распространения в эмали ионов фтора. При аппликации раствора фторида натрия ионы фтора быстро поступают на небольшую глубину (несколько десятков микрометров) и, как считают некоторые авторы, включаются в кристаллическую решетку эмали. Следует отметить, что после обработки поверхности эмали раствором фторида натрия ее проницаемость резко снижается. Этот фактор имеет важное значение для клинической практики, так как определяет последовательность обработки зуба в процессе реминерализующей терапии.

Механизм и пути проницаемости эмали. Эти вопросы до настоящего времени не нашли окончательного разрешения, хотя многие аспекты изучены достаточно подробно. В первую очередь следует указать на наличие в эмали системы мельчайших пространств, в которые могут проникать небольшие молекулы.

Большинство исследователей считают, что основным условием поступления в эмаль зуба различных ионов и анионов является разность осмотических давлений межклеточной жидкости пульпы и ротовой жидкости на поверхности зуба. Так как слюна значительно богаче фосфатами, ионами кальция и другими ионами, чем интерстициальные жидкости (эмалевая жидкость), ионы перемещаются из слюны в эмаль зуба. Процесс этот сложный и может изменяться под воздействием многих факторов: концентрации веществ, ферментативной активности, рН, размера молекулы и др.

Глубина проникновения веществ зависит также от многих факторов. Так, ионы кальция, фосфатов, фтора активно адсорбируются в поверхностных слоях эмали (при условии их кратковременного контакта) в силу сродства проникающих ионов к веществам, из которых состоит эмалиевый слой. Вызывает некоторое затруднение объяснение факта проникновения на всю глубину эмали органических веществ (аминокислот — глицина, лизина и др.) при нанесении их на поверхность эмали. Установлено, что они поступают в глубокие слои по образованиям, также содержащим большое количество органического вещества (ламеллы, веретена и др.). В эксперименте обнаружено проникновение органических веществ в эмаль только из слюны. Со стороны дентина аминокислоты и витамины в эмаль не проникают.

При изучении процесса адсорбции эмалью неорганических и органических веществ неизбежно встает вопрос о роли слюны — среды, в которой постоянно находится зуб, так как вещество в эмаль может поступить только в ионизированной форме, т. е. после растворения в жидкой среде.

Созревание эмали зуба. Такое выражение широко распространено в зарубежной литературе и меньше — в нашей. Под созреванием подразумевается увеличение содержания кальция, фосфора, фтора и других компонентов и совершенствование структуры эмали зуба. Поводом для изучения этого вопроса послужили многочисленные наблюдения изменения зубов и, особенно, эмали после их прорезывания. Так, например, установлено, что у пожилых людей зубы более устойчивы к действию деминерализующих растворов. Это можно объяснить тем, что минеральный состав и структура эмали и дентина с возрастом меняются. Ранее считалось, что изменение химического состава зависит от поступления веществ через пульпу. Однако, по последним данным, изменение минерального состава эмали обусловлено поступлением в нее различных веществ из слюны.

В настоящее время установлено, что в эмали после прорезывания зуба происходит накопление кальция и фосфора, наиболее активно — в первый год после прорезывания зуба, когда кальций и фосфор адсорбируются во всех слоях различных зон эмали. В дальнейшем накопление фосфора, а после 3-летнего возраста — кальция, резко замедляется. По мере созревания эмали и увеличения содержания минеральных компонентов растворимость поверхностного слоя эмали, по показателям выхода в биоптат кальция и фосфора, снижается. Установлена обратная зависимость между содержанием кальция и фосфора в эмали и степенью поражения кариесом. Поверхность зуба, где эмаль содержит больше кальция и фосфора, значительно реже поражается кариесом, чем поверхность зуба, эмаль которого содержит меньшее количество этих веществ.

В созревании эмали важная роль принадлежит фтору, количество которого после прорезывания зуба постепенно увеличивается. Добавочное введение фтора снижает растворимость эмали и повышает ее твердость. Из других микроэлементов, влияющих на созревание эмали, следует указать на ванадий, молибден, стронций.

Механизм созревания эмали изучен недостаточно. Считают, что при этом происходят изменения в кристаллической решетке, уменьшается объем микропространств в эмали, что приводит к увеличению ее плотности. Данные о созревании эмали имеют важное значение в профилактике кариеса, так как по ним можно определить оптимальные сроки проведения обработки реминерализующими препаратами. При недостатке фтора в питьевой воде именно в период созревания эмали необходимо дополнительное введение фтора как внутрь, так и местно, что может быть осуществлено полосканием фторсодержащими растворами, чисткой зубов фторсодержащими пастами и другими способами.

Дентин (dentinum). Дентин, составляющий основную массу зуба, менее обызвествлен, чем эмаль. В нем содержатся 70—72 % неорганических и 28—30 % органических веществ и вода. Основу неорганического вещества составляют фосфат кальция (гидроксиапатит), карбонат кальция и, в небольшом количестве, фторид кальция. В его состав входят также многие макро- и микроэлементы.

Органическое вещество дентина состоит из белков, липидов и полисахаридов. Аминокислотный состав белков типичен для коллагенов: большое количество глицина, пролина, оксипролина и отсутствие серосодержащих аминокислот.

Читайте также:  Что такое трейнеры и действительно ли они могут качественно заменить брекеты?

Основное вещество дентина пронизано множеством дентинных трубочек (рис. 3.21), количество которых колеблется от 30 000 до 75 000 на 1 мм2 дентина. В дентинных трубочках (канальцах) циркулирует дентинная жидкость, которая доставляет органические и неорганические вещества, участвующие в обновлении дентина.

В дентине происходят выраженные обменные процессы, что обусловлено его составом и структурой. В первую очередь это относится к белку дентина. Известно, что молекула коллагена способна к обновлению аминокислотного состава. Наличие дентинных канальцев и циркулирующей в них дентинной жидкости создает необходимые условия для обмена органических и неорганических веществ. Клиническим подтверждением этому является изменение структуры и состава дентина при воздействии различных факторов на твердые ткани зуба: хронической механической травмы, химических веществ, возрастных изменений и др.

Гистологическими исследованиями установлено, что внутренние отделы околопульпарного дентина (предентина) коронки зуба имеют нервные окончания — чувствительные, а возможно, и эфферентные. Большинство авторов считают, что нервные волокна не проникают в обызвествленный дентин на всю его толщину. Электронно-микроскопическими исследованиями также не установлено наличия нервных волокон в обызвествленном дентине, что значительно затрудняет трактовку бесспорного клинического факта — чувствительности дентина (передача боли при препарировании твердых тканей и воздействии на них химических и температурных раздражителей).

М. Bronstrom (1966) выдвинул теорию гидродинамического механизма возникновения боли при воздействии раздражителей. Автор исходил из того, что дентин представляет собой ткань, пронизанную многочисленными трубочками, заполненными дентинной жидкостью. Любое воздействие на дентин вызывает перемещение этой жидкости в рецепторный аппарат пульпы зуба. Экспериментальными исследованиями установлено, что при высушивании поверхности дентина, а также при перегревании тканей зуба в процессе препарирования происходит перемещение ядра одонтобласта в отросток, что может свидетельствовать о выраженных физико-химических изменениях в нем.

Цемент (cementum). Прослойка ткани, покрывающая корень зуба, состоит на 68 % из неорганических и на 32 % из органических веществ. По химическому составу и структуре цемент напоминает грубоволокнистую кость. Основное вещество цемента, пропитанное солями кальция, пронизано коллагеновыми волокнами, которые соединяются с такими же волокнами костной ткани альвеолы. Различают бесклеточный цемент, располагающийся по всей поверхности корня, и клеточный, который покрывает верхушку корня, а в многокорневых — и область бифуркации. В отличие от кости, цемент не имеет кровеносных сосудов.

Только благодаря этому зубы выполняют свое назначение — откусывают и измельчают пищу. Структурные особенности эмали приобретены в процессе филогенеза.

Структура и свойства твердых тканей зуба

Дентин, образующий коронку, покрыт зубной эмалью, а дентин корня – зубным цементом. Эмаль коронки и цемент корня соединяются в области шейки зуба.

Гистологическое строение и химический состав твердых тканей зуба

Эмаль – твердая ткань зуба, которая крепостью приравнивается к алмазу, покрывает дентин коронки зуба. По данным С.М. Ремизона (1965), твердость эмали достигает 397,6 кг на 1 мм² среза эмали. В зависимости от формы зуба и ее локализации толщина эмали разная. На бугорках моляров и премоляров, на режущем крае резцов и клыков постоянных зубов толщина эмали достигает 2-2,5 мм – это так званные иммунные зоны зубов. В природных ямках и фиссурах толщина эмали не превышает 0,5-0,62 мм. В участках шеек зубов, постепенно утончается, эмаль достигает своей минимальной толщины – меньше чем 100мк. Природные ямки и фиссуры принадлежат к кариесвопреимчевых зон.

За онтогенетическим происхождением эмаль является производной эктодермального эпителия. Многослойный плоский эпителий десневых валиков ротовой полости благодаря утолщения эпителия врастанию его в подлежащую мезенхиму дифференцируется и формирует эмалевый орган. Он продуцирует органический матрикс для эмалевых призм – функционально-структурных единиц эмали. Каждая эмалевая призма является продуктом жизнедеятельности одной клетки – энамелобласта (амелобласта, адамантобласта) эмалевого органа фолликулярного периода развития зуба. Энамелобласты продуцируют белки – эмалогенин и энамелин. Органические вещества эмали формирую направление эмалевых призм, контролируют их рост, определяют величину и форму, способствуют их минеральному насыщению фосфорнокислыми солями кальция.

По данным Е.В. Боровского и В.К. Леонтьева (1991), самая твердая ткань организма – это эмаль зуба – на 97% состоит из неорганических в-тв, на 1,2% – из органических (белки, липиды, углеводы). Здоровая эмаль содержит 3,8% свободной и связанной воды. А по данным О.Д. Лцика (1999), эмаль содержит до 96-97% неорганических веществ и 3-4% органических веществ, которые являются белково-углеводными комплексами – гликопротеинами. Гликопротеины образовывают филаментозный матрикс эмали, диаметр филаментов приблизительно 25нм.

Прочность эмали обеспечивают фосфорнокислые соли в виде изоморфных кристаллов апатитов (95%), которые являются самыми мелкими структурными единицами эмали и формируют крупнейшие образования – эмалевые призмы. Эмалевые призмы имеют извитую S-образную форму, утолщенную в центре. Плотные прилегания и строгая организация эмалевых призм обусловливают прочность эмали.

У людей эмаль зубов имеет не мало морфологических особенностей, связанных с развитием зубов и вторичной их минерализации; эмалевые призмы местами не имебт строгой ориентации, межпризменные пространства являются больше, чем в эмали сформированных зубов.

Типичные кристаллы эмалевых призм имеют палочкообразную форму, размешены упорядочено и компактно. Микропространства между ними невелики – 2-3нм в ширину. Кристаллы апатитов на 75% составляют гидроксиапатиты, на 19% – карбонопатиты, на 0.66% – фторопатиты, на 4.4% хлоропатиты и другие.

Основными компонентами эмали является гидроксиапатит – Ca10(PO4)6(OH)2 и восьмикальцевый фосфат – Ca8H2(PO4)6*5H2O. Сегодня известно, что в составе эмали есть приблизительно 41 элемент таблицы Менделеева и их количество зависит от характера питания и наличия в окружающей среде.

Дентин – твердая ткань зуба, которая находится в его коронковой части под эмалью, а в корневой части под цементом. Дентин состоит из основного вещества и трубочек, построиных из минерализованных коллегановых волокон. В ее основном веществе содержится склеивающее вещество и собранные в пучки коллагеновые фибрины. В склеивающем веществе находится большое количество минеральных солей.

Дентинные трубочки размещаются в радиальном направлении от пульпы зуба до дентино-эмалевой границы. В коронковой части они имеют S-образный изгиб, в корневом почти прямые. Диаметр дентинных трубочек колеблется в пределах от 2 до 2.5мкм и уменьшаются при отдалении от пульпы зуба. Дентинные трубочки – это система, по которой циркулирует дентинная жидкость и поступают питательные вещества. Они пронизаны дентинными канальцами, в которых размещены отростки одонтобластов (волокна Томса) и окончание нервных волокон пульпы, но не все дентинные канальцы имеют нервные окончания. Количество их разнообразно, как у разных групп зубов, так и в разных участках зуба. Наибольшее количество нервных окончаний содержится в дентине резцов и в прешеечных участках зубов, что обуславливает их повышенную чувствительность. Дентинные трубочки имеют разветвления, диаметр которых составляет 1/3-1/5 часть диаметра основной трубочки. В каждой трубочке размещается 1-2 отростков одонтобластов, которые полностью повторяют направления дентинных канальцев и проникают в их боковые ответвления, что анастомозируют между собой.

Количество дентинных канальцев на единицу площади в разных участках неодинакова. Возле дентина на 1 мм² дентина находится приблизительно 75000 дентинных канальцев, а на периферии – 15000-30000 на 1мм². В коронке зубов их больше, чем в корне. В молярах их в 1.5 реза меньше, чем в резцах.

Дентин составляет основную часть твердых тканей зуба. На поперечном срезе созревшего дентина гистологически выделяют: тубулярный дентин, из которого построены трубочки, перетубулярный дентин (склеивающее вещество), что находится вокруг трубочек и интертубулярный дентин, который заполняет свободное пространство в середине трубочек.

Дентин, как и эмаль, является беклеточной структурой, он не имеет кровеносных сосудов. Трофика дентина осуществляется с помощью отростков одонтобластов, которые также выполняют нейрорегуляторную, защитную и дентинообразующую функцию. При наличии жизнеспособную пульпу, процесс образования дентина происходит на протяжении всего функционирования зуба. Уникальной способностью одонтобластов является их способность к внутреннеплазматического формирования и соединения с солями кальция коллагеновых филаментов. Этот процесс осуществляется в составе пресекркторных пузырьков Гольджи – так званных телец-лотков. При созревании телец-лотков и их превращении в секреторные гранулы, в них нарастает содержание солей кальция. Через отростки одонтобластов осуществляется секреция компонентов предентина, при этом тела одонтобластов смещается вглубь зуба. Следом за этим происходит минерализация.

Дентин состоит из 28-30% органических веществ, 70-72% из неорганических и воды. Органический матрикс дентина образован коллагеновыми волокнами (коллаген 1 типа).

Неорганическими компонентами дентина, как и в эмали, являются фосфорнокислые соли кальция и магния в виде гидроксиапатитов, а также фтористый кальций, карбонат кальция, натрий.

По одонтогенному происхождению дентин зуба – это последствие дифференциации и гистогенеза мезенхимы зубного зачатка. Она реорганизовывается непосредственно под внутренним шаром эпителия эмалевого органа, который приобретает форму звоночка или бокала и формирует зубной сосочек зачатка зуба. По глубине размещения гистологически различают: глубокий – препульпарный дентин, поверхностный – плащевой дентин и предентин.

Препульпарный дентин внутренний шар дентина, что граничит с пульпой. Для него характерно тангенциальное направление коллагеновых волокон (волокна Энера) и большее количество дентинных трубочек.

Плащевой дентин размещен между эмалью и препульпарным дентином. Он имеет радиальное направление коллагеновых волокон (волокна Корфа) и меньшую насыщенность дентинными трубочками. На границе с эмалью зуба плащевой дентин имеет интерглобулярные пространства – участки не сдавленного дентина между дентинными шариками. Наибольшие по размеру интеглобулярные пространства находятся в коронковай части зуба.

Предентинграничит с пульпой зуба и состоит из необызвествленных коллагеновых волокон и основного вещества. Синтез компонентов предентина осуществляется через отростки одонтобластов

В процессе онтогенеза образовывается первичный и вторичный дентин.

Первичный дентинобразовывается в процессе внутричелюстного развития, что отвечает фолликулярному периоду, и во время внутриротового развития зуба сразу после его прорезывания – в период вторичной минерализации, развития, роста и формирования корней.

Вторичный дентин иррегулярный, заместительный- дентин, который образовывается в сформированном зубе после его прорезывания, отличается от первичного дентина неупорядоченным размещением коллагена и дентинных канальцев, нарушением характера минерализации.

27. Пульпа зуба –мягкая ткань зуба, что обеспечивает питание, иннервацию, защиту и регенерацию тканей зуба. Построена из рыхлой соединительной ткани, что заполняет пульпарную камеру коронки зуба и корневые каналы. Различают три отличия от по строению и функции зоны пульпы:

1) периферическая (предентинная) зона пульпы построена из незрелых коллагеновых волокон и размещенных несколькими шарами тел дентинобластов. Часть расположена между телами дентинобластов преколлакеновых волокон продолжаются непосредственно в коллакеновые волокна дентина.

2) промежуточная зона пульпы зуба. В ней расположены незрелые дентинобласты и преколлагеновые волокна.

3) центральная зона пульпы содержит сосудисто-нервные пучки, коллагеновые и ретикулярные волокна, клеточные элементы рыхлой соединительной ткани: фибробласты, макрофаги, малодиференцированные адвентициальные клетки.

28. Слюна — прозрачная бесцветная жидкость, жидкая биологическая среда организма выделяемая в полость рта тремя парами крупных слюнных желез (подчелюстные, околоушные, подъязычные) и множеством мелких слюнных желез полости рта. В полости рта образуется смешанная слюна или ротовая жидкость, состав которой отличается от состава смеси секретов желез, так как в ротовой жидкости присутствуют микроорганизмы и продукты их жизнедеятельности и различные компоненты пищи, компоненты зубного налета и зубного камня. Слюна смачивает полость рта, способствуя артикуляции, обеспечивает восприятие вкусовых ощущений, смазывает и склеивает пережёванную пищу, способствуя глотанию. Кроме того, слюна очищает полость рта, обладает бактерицидным действием, предохраняет от повреждения зубы. Под действием ферментов слюны в ротовой полости начинается переваривание углеводов.

Слюна обладает рН от 5,6 до 7,6. На 98,5 % и более состоит из воды, содержит соли различных кислот, микроэлементы и катионы некоторых щелочных металлов, муцин (формирует и склеивает пищевой комок), лизоцим (бактерицидный агент), ферменты амилазу и мальтазу, расщепляющие углеводы до олиго- и моносахаридов, а также другие ферменты, некоторые витамины. Также состав секрета слюнных желез меняется в зависимости от характера раздражителя.

ВеществоСодержание
Вода994 г/л
Белки1,4—6,4 г/л
Муцин0,9—6,0 г/л
Холестерин0,02—0,50 г/л
Глюкоза0,1—0,3 г/л
Аммоний0,01—0,12 г/л
Мочевая кислота0,005—0,030 г/л
Соли натрия6—23 ммоль/л
Соли калия14—41 ммоль/л
Соли кальция1,2—2,7 ммоль/л
Соли магния0,1—0,5 ммоль/л
Хлориды5—31 ммоль/л
Гидрокарбонаты2—13 ммоль/л
Мочевина140—750 ммоль/л

В среднем за сутки выделяется 1—2,5 л слюны. Слюноотделение находится под контролем вегетативной нервной системы. Центры слюноотделения располагаются в продолговатом мозге. Стимуляция парасимпатических окончаний вызывает образование большого количества слюны с низким содержанием белка. Наоборот, симпатическая стимуляция приводит к секреции малого количества вязкой слюны. Без стимуляции секреция слюны происходит со скоростью около 0,5 мл/мин.

Отделение слюны уменьшается при стрессе, испуге или обезвоживании и практически прекращается во время сна и наркоза. Усиление выделения слюны происходит при действии обонятельных и вкусовых стимулов, а также вследствие механического раздражения крупными частицами пищи и при жевании.

Дата добавления: 2015-12-16 | Просмотры: 810 | Нарушение авторских прав

Дентин – твердая ткань зуба, которая находится в его коронковой части под эмалью, а в корневой части под цементом. Дентин состоит из основного вещества и трубочек, построиных из минерализованных коллегановых волокон. В ее основном веществе содержится склеивающее вещество и собранные в пучки коллагеновые фибрины. В склеивающем веществе находится большое количество минеральных солей.

Структура и свойства твердых тканей зуба

В составе зуба различают коронковую, шеечную и корневую части. Коронка выступает над десной, а шейка и корень погружены в ткани зубной альвеолы. Внутри зуба находится полость, заполненная пульпой. Коронку зуба образуют эмаль, дентин и пульпа. Эмаль — производное дифферона энамелобластов. Структурными элементами эмали являются эмалевые призмы диаметром 3-5 мкм. Они имеют S-образно изогнутый ход. В состав призмы входят органические вещества в виде субмикроскопической фибриллярной сети (филаментов промежуточного типа), углеводы, кристаллы минеральных солей (фосфат кальция в форме гидроксиапатита, фторид кальция). Доля последних равна 96-97% массы эмали. Эмалевые призмы объединяются с помощью менее обызвествленного межпризменного вещества и покрывают коронку зуба в виде эмали.

По твердости эмаль близка к кварцу. Снаружи эмаль покрыта тонкой кутикулой, которая постепенно стирается при приеме пищи. Несмотря на то, что эмаль это неклеточная структура, которая не содержит кровеносные сосуды, для нее характерен обмен веществ. Транспорт веществ в эмаль осуществляется эмалевой жидкостью через межпризменные необызвествленные пространства. При недостатке питательных веществ и витаминов эмаль разрушается.

Дентин — ведущая ткань зуба, состоит из коллагеновых фибрилл и склеивающего их вещества с большим количеством солей кальция. В дентине минеральные соли составляют 72%, а органические вещества — 28%. Вещество дентина пронизано дентинными канальцами, или трубочками.

В них проходят длинные отростки одонтобластов, расположенных в периферическом слое пульпы зуба. В дентинных канальцах проходят также безмякотные нервные волокна. За счет этих канальцев осуществляются трофические процессы. В обмене веществ дентина большое значение имеют так называемые интерглобулярные пространства — необызвествленные участки в виде шарообразных полостей. Благодаря таким участкам граница между дентином и эмалью становится неровной, фестончатой, что обеспечивает прочное соединение двух тканей. Между одонтобластами, располагающимися в периферических участках пульпы, и дентином находится полоса необызвествленного матрикса, называемая предентином. За счет последующего отложения солей в предентине происходит аппозиционный рост дентина и рост зуба.

Читайте также:  Художественная реставрация передних зубов до и после: цена, отзывы

Цемент — своеобразная костная ткань, покрывающая шейку и корень зуба. В нем содержится 30% органических и 70% неорганических веществ. Различают две разновидности цемента: бесклеточный и клеточный. Бесклеточный цемент состоит из аморфного вещества и коллагеновых волокон, которые переходят в териодонт и далее в костную ткань альвеол челюстей, прочно закрепляя зуб в его ячейке. Клеточный цемент содержит цементоциты и по строению соответствует грубоволокнистой костной ткани. В составе цемента нет кровеносных сосудов, поэтому трофические процессы в нем обеспечиваются за счет кровоснабжения териодонта путем диффузии.

Пульпа зуба (зубная мякоть) располагается в полости зуба и в корневых каналах. Корневые каналы свободно открываются в зубную альвеолу. Пульпа зуба образована рыхлой волокнистой соединительной тканью. Периферическое положение в пульпе занимают одонтобласты. В промежуточном и центральном слоях пульпы зуба находятся адвентициальные клетки, фибробласты, макрофаги, аргирофильные и коллагеновые волокна. В пульпе зуба разветвляются многочисленные кровеносные сосуды, а также нервные волокна с чувствительными нервными окончаниями.

С возрастом уменьшается содержание органических веществ в эмали, дентине и цементе зуба, а в связи с нарастающими склеротическими изменениями сосудов пульпы ухудшаются кровоснабжение и трофика всех его частей.
Репаративная регенерация зуба возможна лишь в ограниченных пределах.

Эмаль после повреждения не восстанавливается. Дентин образуется медленно и в очень небольшом количестве за счет дифференцировки одонтобластов. Цемент зуба регенерирует слабо.

Цемент — своеобразная костная ткань, покрывающая шейку и корень зуба. В нем содержится 30% органических и 70% неорганических веществ. Различают две разновидности цемента: бесклеточный и клеточный. Бесклеточный цемент состоит из аморфного вещества и коллагеновых волокон, которые переходят в териодонт и далее в костную ткань альвеол челюстей, прочно закрепляя зуб в его ячейке. Клеточный цемент содержит цементоциты и по строению соответствует грубоволокнистой костной ткани. В составе цемента нет кровеносных сосудов, поэтому трофические процессы в нем обеспечиваются за счет кровоснабжения териодонта путем диффузии.

Структура и свойства твердых тканей зуба

В зубе различают:
*коронку (утолщенная часть, выступающая в полость зуба)
*шейку зуба (прилегающая к коронке суженная часть, окруженная десной)
*корень зуба (часть зуба, расположенная внутри луночки челюсти)

Зубы состоят из твердых и мягких тканей. К твердым тканям относятся эмаль, дентин и цемент, к мягким – пульпу, заполняющую полость коронки и каналы корней

Пульпа зуба

Внутри зуба имеется полость, которая напоминает форму коронки, а в корне зуба продолжается в виде канала. Канал корня зуба заканчивается на верхушке корня отверстием. Полость зуба заполнена рыхлой соединительной тканью, богатой сосудами и нервами, – пульпой. В пульпе зуба различают коронковую и корневую части. Пульпа коронки зуба представлена рыхлой соединительной тканью с нежной сетью коллагеновых волокон и большим количеством клеточных элементов. В пульпе корня зуба коллагеновые структуры более плотные, толстые и располагаются продольно походу сосудисто-нервного пучка. В пульпе много клеток, участвующих в образование фиброзных капсул (фибробласты), которые ограничивают очаг воспаления.
По клеточному составу в пульпе различают периферический, субодонтобластический и центральный слои.

Периферический слой пульпы состоит из специализированных клеток, одонтобластов, принимающих участие в обменных процессах эмали и дентина. Расположены одонтобласты в несколько рядов.

Субодонтобластический и центральный слои состоят из мелких клеток, которые не имеют определенной специализации. В центральных слоях выделяют специальные клетки – гистиоциты, которые при воспалении приобретают способность передвигаться и поглощать микроорганизмы и называются макрофагами.

Кровоснабжение пульпы обеспечивают кровеносные сосуды, проникающие в нее через отверстие верхушки корня зуба и через дополнительные каналы из периодонта.

Артериальные стволы сопровождают вены, обеспечивая отток венозной крови.

Лимфатическая система в пульпе представлена в виде щелей, капилляров, сосудов. Отток лимфы от пульпы в поднижнечелюстные и подбородочные лимфатические узлы.

Через верхушечное отверстие проходят чувствительные волокна тройничного нерва, которые иннервируют пульпу, образуя сплетения.

Пульпа зуба несет трофическую, защитную и пластическую функцию. Трофическая функция осуществляется за счет развитой сети кровеносных и лимфатических сосудов, защитная – за счет клеток-гистиоцитов, пластическая – это участие пульпы в образовании дентина.

Периодонт

Корень зуба удерживается в лунке соединительнотканными волокнами, которые составляют корневую оболочку или периодонт. Периодонт расположен в узком щелевидном пространстве между корнем зуба и костью челюсти. Толщина периодонта составляет 0,15-0,25 мм. С возрастом, а также от механической нагрузки толщина периодонта изменяется и составляет около 1,2 мм.

Основой соединительной ткани периодонта являются пучки межзубных и цементно-альвеолярных волокон, которые вплетаются, с одной стороны, в костную пластину альвеолы, а с другой – в цемент корня зуба.

В области шейки зуба соединительнотканные волокна имеют почти горизонтальное направление и включают в себя многочисленные коллагеновые волокна, которые охватывают вокруг пришеечную область (круговая связка).

Верхушечный периодонт содержит больше рыхлой соединительной ткани и клеточных элементов. С помощью соединительнотканных волокон зуб как бы подвешивается и фиксируется в костном ложе.

Кровоснабжение периодонта обильное, есть достаточно развитая лимфатическая сеть. Сосуды периодонта образуют несколько сплетений (наружное, среднее, капиллярное) в области корня.

Основная функция периодонта – опорно-удерживающая. Кроме того, периодонт распределяет, регулирует давление на зуб (амортизирующая функция), обладает пластической функцией за счет содержащихся в нем клеточных элементов, барьерной функцией (благодаря своеобразию анатомического строения и устойчивости к неблагоприятным воздействиям внешней среды).

Пародонт

Пародонт – это комплекс тканей, окружающих корень зуба и имеющих одну с ним генетическую основу. В состав пародонта входят: десна, слизистая оболочка, покрывающая альвеолярную часть челюсти, кость альвеолы, периодонт.

Твердые ткани зуба

Основную массу твердых тканей зуба составляет дентин, который окружает полость зуба. В области коронки зуба дентин покрыт ярко-белой эмалью. Дентин корня покрыт цементом.

Дентин

Дентин по своему строению напоминает грубоволокнистую костную ткань, состоящую из основного вещества, пронизанного большим количеством дентинных трубочек. Основное вещество дентина состоит из коллагеновых волокон, между которыми находится склеивающее вещество. Наружный слой дентина с радиальным (лучеобразным) расположением волокон называется плащевым. Внутренний слой называется околопульпарным. Дентинные трубочки (канальцы) имеют форму имеют круглую или овальную форму. Они начинаются в полости зуба, волнообразно изгибаясь, проходят через толщину дентина и заканчиваются колбообразными вздутиями в области дентинэмалиевого соединения.

В просвете этих канальцев расположены дентинные отростки одонтобластов. В дентине содержится 70-72% неорганических веществ (в основном фосфат и карбонат кальция), а 28-30% составляет вода и органическое вещество (белки, жиры и углеводы).

Эмаль зуба

Эмаль зуба является самой твердой тканью человеческого организма. В области бугров коронки зуба находится наиболее толстый слой эмали, по направлению к пришеечной области толщина эмали уменьшается.

Эмалевые призмы являются основным структурным образованием эмали. Эмалевая призма представляет собой граненое цилиндрическое волокно, начинающееся в области дентинэмалиевого соединения. Она, изгибаясь S-образно, заканчивается на поверхности коронки зуба. Эмалиевые призмы соединены в пучки (по 10-20), направлены в виде лучей от дентинэмалиевого соединений к наружной поверхности. Толщина призм – от 3 до 6 мкм. В каждой призме проходят тонкие цитоплазматические волокна, образующие органическую сеточку, в петлях которой располагаются кристаллы минеральных солей. Эмалиевые призмы и межпризменные пространства состоят из строго ориентированных, в определенном порядке расположенных кристаллов гидрооксиапатита, длина которых колеблется от 50 до 100 нм.

Большую часть зуба составляют неорганические вещества (95%). Органических веществ в эмали зуба около 1,2%, воды – 3,8%. В эмали зуба содержится много минеральных солей, из которых около 54% составляют фосфор и кальций (17% и 37% соответственно)

Цемент зуба

Цемент зуба покрывает корень и подразделяется на первичный и вторичный.

Первичный (бесклеточный) цемент прилежит непосредственно к дентину, покрывая боковые поверхности корня зуба.

Вторичный (клеточный) цемент содержит клетки цементоциды, он покрывает слой первичного цемента в области верхушки корня и на межкорневых поверхностях больших и малых коренных зубов.

Основное вещество цемента представлено коллагеновыми волокнами, идущими в различных направлениях, большая часть которых идет в виде лучей. При некоторых заболеваниях отмечается избыточное отложение слоев цемента на поверхности корня зуба (гиперцементоз). Цемент состоит из 68% неорганических и 32% органических веществ.

Твердые ткани зуба

Гистологическое строение

Гистология – наука, изучающая различные биологические ткани. Гистологическое строение зуба – состав и соотношение тканей, которые его формируют.

Зуб состоит из четырех видов тканей:

  1. дентина;
  2. эмали;
  3. цемента;
  4. пульпы.


Основное вещество дентина пронизано микроскопическими канальцами, в которых расположены клеточные отростки – одонтобласты. Они вырабатывают коллаген и способствуют обновлению и регенерации дентинной ткани.

Из чего состоит зуб?

Прежде, чем говорить о строении зуба, нужно понимать – что это не отдельный орган. В стоматологии принято вычленять зубной орган, в состав которого входят сам зуб и ткани, которые его окружают. На вопрос: из чего состоит зуб, стоматологи расскажут о двух видах строения – анатомическом и гистологическом.

Гистология выделяет 4 части зуба, но к этому списку можно добавить ещё два элемента:

Особенности молочных зубов

Зачатки молочных зубов появляются в период внутриутробного формирования плода. Первые зубки у малыша начинают прорезываться в возрасте 5-8 месяцев. Появление зубиков – долгожданное событие в семье, которое приносит молодым родителям и крохам не только радость, но и беспокойство. Во время прорезывания могут наблюдаться изменение поведения карапуза (вялость, капризность, плаксивость), повышенное слюноотделение, лихорадка, нарушения аппетита и пищеварения.

Отличительные особенности молочных зубов:

  • небольшие размеры;
  • округлость формы коронки;
  • молочный цвет;
  • наличие эмалевого валика у десны;
  • вертикальное расположение. Постоянные зубы имеют наклон в области губы и щек.

Резцы, клыки и моляры малышей имеют схожее строение с постоянными зубами. Существенным отличием является тонкое эмалевое покрытие и объемная нервно — сосудистая камера. В связи с этими особенностями, у малышей наблюдается быстрое развитие кариеса и возникновение пульпита.


При появлении неблагоприятных симптомов, как можно раньше посетите стоматолога.

Анатомическое строение зуба

Строение зубов человека – очень интересный раздел стоматологии. Ведь каждый элемент можно сравнить с мини-организмом. Тут есть «бронированная кожа» – эмаль и цемент, внутренний «скелет» или дентин, а также нервно-сосудистый пучок – своеобразный «центр управления ресурсами». В сегодняшней статье расскажем про анатомическое и гистологическое строение зуба, каковы особенности внешнего и внутреннего строения молочных и постоянных зубов.

Эмаль зуба

Химический состав

Эмаль зуба образована из амелобластов. В период развития происходит ее цикли­ческая минерализация. Кристаллизация кальциево-фосфатных соединений в процессе минерализации и последующий рост кристаллов определяется как предэруптивное созревание эмали. При этом сохраняются ростовые линии, образо­вавшиеся вследствие неравномерной ми­нерализации эмали. Каждый кристалл эмали имеет гидратный слой, благодаря которому осуществляется ионный об­мен.

После прорезывания зубов пористость и неоднородность нивелируются вследст­вие постэруптивного созревания эмали. Сформированная эмаль зуба — это не-регенерирующаяся ткань, не содержащая клеток, клеточных элементов.

Эмаль зуба — самая твердая ткань в организме человека.

В среднем толщина ее колеблется между 2,8 и 3,0 мм в зависимости от степени зрелости, химического состава и топо­графии.

Твердость эмали составляет от 250 KHN (Knoop-hardness numbers) на грани­це эмаль-дентин до 390 KHN на ее по­верхности.

Основной структурный элемент эмали зуба — неорганические вещества, причем данные об их количестве отлича­ются в зависимости от метода анализа и пробы (93-98% массы). Вторым по объе­му компонентом эмали является вода: данные о ее количестве колеблются меж­ду 1,5 и 4% массы. Эмаль также содер­жит органические соединения, в частнос­ти протеины и липиды.

На состав эмали влияют питание, воз­раст и другие факторы. Ее составные ча­сти — это апатиты нескольких типов, ос­новным из которых является гидрокси-апатит. Кроме того, в эмали зуба выявлено свыше 40 микроэлементов. Некоторые из этих микроэлементов попадают в полость рта только в результате стоматологичес­ких вмешательств, другие (например, оло­во и стронций) можно рассматривать как следствие влияния окружающей среды.

Состав эмали отличается в зависимости от ее топографии, вследствие колебаний концентрации отдельных элементов. Так, концентрация фторидов, железа, цинка, хлора и кальция уменьшается от поверхности эмали по направлению к гра­нице эмаль-дентин. Концентрация фтори­дов на этом участке возрастает, а концен­трация воды, карбоната, магния и натрия уменьшается от эмалево-дентинной границы к поверхности эмали.

По-видимому, содержание магния и карбоната влияет на показатели плотности эмали.

На участках с повышенной концент­рацией магния, вблизи бугров дентина и непосредственно под центральной фис-сурой зубов, наблюдается меньшая плотность, чем, например, на минерализованных участках щечных и язычных поверхностей.

Кальций и фосфор, как апатитовое со-единение, содержатся в форме кристаллов в соотношении 1:1,2 (Са10- хРО6-x )* Х22О. Внутренние замещающие реакции могут привести к образованию фтор-апатита или же фтористого гидрокси-апатита. Допускают также возможность образования карбоната в минералах эма­ли. Образовавшийся апатит отличается меньшей резистентностью к кариесу, чем гидроксиапатит. Наряду с указанными соединениями в эмали в незначительном количестве выявлено ряд кальциево-фос-фатных соединений, например, октакаль-цийфосфат.

Вода содержится в зубной эмали в двух формах. Первая — связанная вода (гидратная оболочка кристаллов), вторая-свободная вода, располагающаяся в мик­ропространствах.

Свободная вода может при нагревании испаряться, но и эмаль способна впиты­вать воду при поступлении влаги. Это свойство можно использовать как объяс­нение определенных физических явлений при возникновении кариеса или его пре­дупреждении.

Эмаль зуба функционирует как «моле­кулярное сито», а эмалевая жидкость слу­жит переносчиком молекул и ионов.

Меньшая часть органической субстан­ции зрелой эмали состоит из протеина (=58%), липидов (=48%) и незначитель­ного количества углеводов, цитрата и лак-тата. Большая часть органических ве­ществ находится во внутренней трети эмалевой оболочки в форме эмалевых пучков.

На шлифах эмали выявляется оптичес­кая неоднородность (темные и светлые полосы), обусловленная различным (продольным или поперечным) направлени­ем S-образно изогнутых эмалевых призм на срезе — полосы Гюнтера-Шрегера.

Научная электронная библиотека

Янушевич О. О., Сарычева И. Н., Минаков Д. А., Шульгин В. А.,

Также из рис. 5, а видно, что суммарная интенсивность флуоресценции пришеечной области всех зубов нижнего ряда челюсти выше, чем верхнего, что коррелирует с тем фактом, что в среднем толщина нижнего ряда зубов меньше, чем верхнего (см. табл. 1 и 2).

Морфофункциональные особенности твердых тканей зубов

Зубы состоят из твердых (эмаль, дентин, цемент) и мягкой (пульпа) тканей. Они расположены в альвеолах челюстей и выполняют ряд функций: участвуют в пищеварении, речсобразова- нии, важны для эстетической и социальной адаптации человека.

Образование зубов начинается в эмбриональном периоде и заканчивается в 18-28 лет.

Различают три вида прикусов – молочный, сменный и постоянный. Молочный прикус представлен 20 временными зубами – 8 резцов, 4 клыка и 8 больших коренных зубов.

Читайте также:  Чем приклеить сломанный зуб дома

Рис. 3.3. Зубные ряды у детей и взрослых (И.К. Древаль, 2009): а – молочные зубы зубного ряда верхней и нижней челюстей у детей: 1 – центральные резцы (6-8 месяцев); 2 – боковые резцы (8-12 месяцев); 3 – клыки (8-12 месяцев); 4 – первые моляры (12-16 месяцев); 5 – вторые моляры (20-40 месяцев); б – постоянные зубы зубного ряда верхней и нижней челюстей у взрослых

Сменный прикус характеризуется наличием в полости рта как временных, так и постоянных зубов. Молочные зубы начинают заменяться постоянными с 5-7-летнего возраста. Завершается этот процесс к 13 годам.

Постоянный прикус представлен 32-28 зубами – 8 резцов, 4 клыка, 8 малых коренных зубов (премоляров) и 12-8 больших коренных зубов (моляров). Число прорезавшихся моляров бывает различным, так как третьи большие коренные зубы («зубы мудрости») могут не прорезаться или прорезываются не в полном количестве.

В каждом зубе выделяют коронку (выступает из челюсти и находится в полости рта) и корень, который локализован в альвеоле кости (верхней либо нижней челюсти). Между ними находится шейка зуба. В молярах имеется несколько корней зуба. Внутри зуба расположена полость, которую подразделяют на полость коронки и канал корня зуба. В полости находится пульпа зуба.

Основную часть каждого зуба составляет твердая обызвествленная дентиноидная ткань – дентин. Дентин покрыт другими твердыми тканями – в области коронки и шейки эмалью, а в области корня – цементом.

Дентин (дентиноидная ткань) разновидность костной ткани, не содержащая в основном веществе кровеносных сосудов и клеток (табл. 3.1). Основное вещество в пересчете на единицу массы содержит 20% органических веществ, 70% минеральных соединений и 10% воды. Органические вещества дентина представлены коллагеном (до 92%) 1 -го и в меньшем количестве 5-го типов и неколлагеновыми белками (про- теогликаны и фосфопротеины) для связывания кристаллов гидроксиапатита с коллагеном. Основным минеральным компонентом дентина является гидроксиапатит, имеется также кальция карбонат и небольшое количество кальция фторида.

Основное вещество дентина продуцируется одонтобласта- ми, расположенными на периферии пульпы и направляющими свои отростки в дентинные трубочки (табл. 3.1). Дентинные трубочки представляют собой тонкие канальцы, пронизывающие дентин в направлении дентинно-эмалевой границы. Их плотность вблизи пульпы (40 000 трубочек/мм 2 ) в 2 раза выше, чем у дентинно-эмалевой границы. Дентинные трубочки помимо отростков одонтобластов содержат нервные и коллагеновые волокна, а также дентинную жидкость, сходную по составу с плазмой крови. На долю трубочек приходится около

Таблица 3.1. Сравнительная характеристика твердых тканей зуба и кости (С.Л. Кабак, А.А. Артишевский, 2005;

А.Д. Таганович и соавт., 2007)

Клетки в зрелой ткани

Цементоциты или нет

Амелобласты (до прорезывания)

Одонтокласты разрушают эмаль, дентин и цемент

Минеральные вещества, % весовой

Органические вещества, % весовой

Плотность, г/см 3

Пути поступления питательных веществ

Диффузия из слюны

Из пульпы через дентинную жидкость

Диффузия из периодонтальной связки

Диффузия из кровеносных сосудов

Способность к регенерации

Третичный дентин при повреждении

Новые слои при повреждении

Созревание, затем истирание

Вторичный дентин, склерозирование

Увеличение скорости резорбции

30% объема дентина. Через них осуществляется питание дентина. При кариесе дентинные трубочки служат путями распространения микроорганизмов. Большое количество дентинных трубочек обусловливает его высокую проницаемость и быструю реакцию пульпы на повреждение дентина.

Эмаль – самая твердая и самая плотная структура в организме человека, выдерживающая большие механические нагрузки, устойчивая к колебаниям температуры и действию химических веществ (кислот, щелочей, ферментов, продуктов жизнедеятельности микроорганизмов полости рта), содержащихся в пище и в ротовой жидкости. По шкале твердости она приближается к кварцу, а по своей плотности зрелая эмаль почти в 1,5 раза превосходит другие твердые ткани.

Эмаль (по сравнению со всеми твердыми тканями) содержит наибольшее количество неорганических веществ (до 99%) – минеральных (95%) и воды (4%). Минеральная основа эмали – кристаллы апатитов: гидроксиапатит (75-90%), фтор- апатит, карбонатный апатит, хлорапатит. Минеральные вещества неравномерно распределены в эмали. В наружных слоях эмали много кальция и фосфатов, а содержание фтора в 10 раз больше, чем в подлежащих слоях. Поэтому поверхностные слои эмали более твердые и более устойчивые к химическим и температурным воздействиям, но в то же время и более хрупкие.

Органический компонент эмали (до 1%) представлен неколлагеновыми белками, пептидами, липидами, моносахаридами. Неколлагеновые белки – амелогенины, энамелины, Са-связывающий белок эмали (КСБЭ). Он играет главную роль в формировании белковой матрицы. Эта матрица является зоной нуклеации для роста кристаллов гидроксиапатита. Она фиксируется на волокнах амелогенинов.

Эмаль – минерализованный продукт эпителиальных тканей (дентин, цемент и кость – представители соединительных тканей). Эмаль не содержит клеток и является единственной тканью организма человека, которая не обладает способностью к регенерации в ответ на повреждение. Она состоит из эмалевых призм и межпризменного вещества. Эмалевые призмы состоят из кристаллов апатитов (прежде всего, гидроксиапатита и др.), КСБЭ, энамелинов, амелогенина. Их размеры достигают в толщину 30 нм, в ширину 65 нм и в длину несколько миллиметров. Часто призмы имеют S-образную форму. Это предотвращает образование в эмали радиальных трещин в связи с высокими нагрузками при жевании. Каждый кристалл гидроксиапатита покрыт гидратной оболочкой. Микрощели между кристаллами заполнены эмалевой жидкостью, которая осуществляет транспорт молекул и ионов. Межпризматические пространства заполнены также эмалевой жидкостью и органическим веществом, которое обнаруживается в виде тончайших фибриллярных структур, ламелл (эмалевых пластинок), пучков и веретен. Ламеллы проходят через всю толщину эмали, слабоминерализованы и могут служить не только для транспорта веществ и их обмена с веществами гидратной оболочки и кристаллами апатитов, но и быть входными воротами для микроорганизмов при кариесе.

Эмаль – бессосудистая ткань. Ее питание осуществляется главным образом из слюны (поверхностные слои) и дентинной жидкости (внутренние слои) посредством эмалевой жидкости. Эмаль проницаема в двух направлениях. Скорость диффузии веществ в зависимости от их молекулярной массы и физико-химических свойств составляет от нескольких микрометров до 1 мм/ч. Проницаемость эмали повышается при воздействии кислот, дефиците в пище солей фосфора, повреждении пелликулы, под влиянием кальцитонина и гиалуронида- зы. Под воздействием щелочных продуктов, фтора, паратгор- мона проницаемость эмали снижается. Обновление эмали и поддержание постоянства ее состава обеспечивается равновесием процессов деминерализации (растворение кристаллов гидроксиапатита) и реминерализации (новообразование кристаллов). Оптимальные условия для поддержания равновесия создаются при pH ротовой жидкости в пределах от 6,2 до 7,4 ед. В условиях перенасыщения ее ионами Са 2+ и фосфатов.

После прорезывания зубов (особенно в первые годы) в эмали происходят процессы созревания. Созревание эмали сопровождается значительным снижением содержания в ней органических веществ (почти в 20 раз) и воды (в 11 раз), а также увеличением содержания минеральных веществ (почти в 2,7 раза по массе и в 5,5 раза по объему) и совершенствованием ее структуры. У людей старшего возраста происходит постепенное стирание эмали.

Эмаль зуба снаружи покрыта органическими оболочками – кутикулой и пелликулой.

Кутикула – двухслойная оболочка, формирующаяся при прорезывании зуба и являющаяся остатком эмалеобразующего эпителия.

Пелликула – производное слюны, состоит из гликопротеинов, аминокислот и полисахаридов, тонким слоем покрывает коронку, не исчезает в процессе жевания. Роль пелликулы неоднозначна. С одной стороны, она выполняет защитную функцию – предохраняет кристаллы эмали от повреждающего действия органических кислот, что многократно снижает растворимость кристаллов гидроксиапатита, с другой – способствует прикреплению микроорганизмов и образованию зубного налета.

Зубная бляшка (зубной налет) – поверхностное образование на эмали зубов, прикрепленное к пелликуле и состоящее из скопления микроорганизмов различных видов, продуктов их жизнедеятельности, компонентов слюны, неорганических соединений.

Зубной бляшке и кислотам, образующимся в ней в результате жизнедеятельности микроорганизмов, отводят ключевую роль в развитии кариозного процесса (химико-паразитарная теория Миллера).

Кариес – это патологический процесс в твердых тканях зуба, возникающий после его прорезывания и сопровождающийся деминерализацией и протеолизом (сначала в виде пятна, а затем и полости в коронке зуба) под влиянием местных и общих факторов. К общим кариесогенным факторам относятся следующие: характер питания (избыточное содержание в пище рафинированных, кариесогенных углеводов, ди- и моносахаридов – сахарозы, глюкозы, фруктозы, мальтозы, лактозы); состав питьевой воды (содержание фтора в ней должно быть 1 мг/л); перенесенные и сопутствующие заболевания и др. К местным кариесогенным факторам относятся наличие зубного налета и микроорганизмы (стрептококки mutans, salivarius, sanguis, mitis, лактобактерии и др.), остатки углеводистой пищи, понижение pH ротовой жидкости и скорости саливации.

Зубной камень – твердое образование на поверхности зубов, вторым термином которого является «минерализованная зубная бляшка». Зубной камень формируется обычно на поверхности зубного налета язычной стороны зуба, вблизи протоков слюнных желез. Процесс обызвествления зубной бляшки начинается через 1-3 суток и занимает около 12 дней. Обызвествлению способствует защелачивание среды при смещении pH ротовой жидкости выше 7,6, что ускоряет образование и отложение в зубную бляшку кристаллов апатита. Благодаря активности микроорганизмов, продуцирующих азот (из-за выделения мочевины, аммиака и защелачивания среды), камень может постоянно расти и вызывать повреждения не только эмали, но и зубодесневого соединения и пародонта.

Для профилактики развития кариеса или образования зубного камня необходимо ежедневно чистить зубы после каждого приема пищи (по крайней мере после завтрака и ужина) в течение 3 мин. Если нет возможности почистить зубы после приема пищи, надо прополоскать рот водой. Подчеркнем, что антибактериальное и реминерализующее действие зубных паст осуществляется, когда паста находится во рту не менее 2-3 мин. Следует также помнить, что для колоний бактерий продолжительность в 12 ч является пороговой. По истечении этого времени могут происходить изменения в их жизнедеятельности, способствующие закреплению зубного налета (зубной бляшки) на зубах и образованию зубного камня или развитию кариеса. Таким образом, чистить зубы в течение 2-3 мин как минимум 2 раза в день – объективно обусловленное требование, соблюдение которого повысит эффективность гигиены полости рта.

Цемент – третья разновидность твердых тканей зуба. Он покрывает дентин в области корня и шейки зуба, заходя (60% случаев) при этом частично на эмаль. По строению и химическому составу цемент зуба напоминает кость, но в отличие от нее не содержит сосудов и не подвергается постоянным перестройкам. Новообразование цемента продолжается в течение всей жизни индивидуума. Его постоянное отложение на верхушке корня вызывает удлинение зуба (пассивное прорезывание) и компенсирует стирание эмали коронки.

Различают бесклеточный (первичный) и клеточный (вторичный) цемент.

Цемент выполняет следующие функции: через периодонтальную связку обеспечивает прикрепление корня зуба к альвеолярному отростку кости; играет важную роль в репаративных процессах; «запечатывает» наружные концы дентиновых трубочек и предупреждает попадание инфекции из периодонтального пространства в пульпу.

Пульпа – зубная мякоть, которая является мягкой тканью зуба, содержит сосуды и нервные окончания и выполняет пластическую (одонтогенез и образование дентина), трофическую (питание дентина), защитную, репаративную (образование третичного дентина, участие в иммунных реакциях), сенсорную функции. Живая неповрежденная пульпа необходима для осуществления нормальной функции зуба.

Новые слои при повреждении

Заболевания дентина зуба

Основная причина поражения дентина – кариес. Причинами кариеса становится чрезмерное употребление углеводосодержащей пищи, зубной налет, микрофлора которого разрушает эмаль, снижение уровня кислотности во рту. Твердые ткани под действием перечисленных факторов лишаются минерализации, и происходит их изменение. Дентинная система обзаводится так называемыми мертвыми путями, в которых отростки одонтобластов погибли. Если не устранять кариес на ранних этапах, бактерии проникнут к пульпе и вызовут воспаление. Отмершие области придется удалить, что прекратит обменные движения в дентине.

  • Повышенная стираемость эмали. Она возникает при неправильном прикусе или же воздействии на эмаль агрессивных веществ. В результате болезни коронка частично или полностью разрушается, для ее восстановления требуется процедура реставрации.
  • Клиновидный дефект. Вслдствие нарушения обменных процессов в эмалевом и дентинном слоях возникают дефекты в отделе шейки. Поражению чаще всего подвержены резцы и клыки, реже – малые коренные единицы.
  • Гиперестезия, которая нередко сопровождает уже перечисленные проблемы. Гиперестезия – это повышенная чувствительность зубного аппарата к еде разной температуры, к сладкой или соленой пище. Наблюдается такая проблема и при процессе жевания.


Использование зубной пасты должно быть правильным, чтобы фтор, кальций и другие элементы успели впитаться. Движения зубной щеткой должны быть круговыми, а процедура чистки зубов должна длиться минимум 2-3 минуты.

Гистологическое строение, функции и разновидности дентина

Дентин – это основа жевательного органа. В разных местах толщина этой твердой ткани зуба составляет от 2 до 6 мм (это заметно на шлифе зуба). В коронке дентин закрывает эмаль, а на корне – цемент. Если говорить о составе дентина, то основная его часть – это неорганические вещества (около 70%), 20% — органика и всего 10% — вода. Иными словами, дентин — это обызвествленный слой с коллагеновыми волокнами. Весь слой дентина зуба пронизан тонкими трубками – канальцами. В них расположены отростки одонтобластов – клеток пульпы.

Дентин – сложное вещество, состоящее из нескольких слоев. Опишем их:

  1. Предентин. Пористый эластичный слой, образованный большим количеством одонтобластов. Предентин защищает и питает пульпу. Он имеет еще одно значение — отвечает за чувствительность.
  2. Интерглобулярным дентином заполнено пространство между канальцами. Интерглобулярная ткань подразделяется на околопульпарный и плащевой дентин. Околопульпарный расположен вокруг пульпы, а плащевой примыкает к эмали. В плащевом дентине меньше коллагеновых волокон, чем в околопульпарном.
  3. Канальцы. Тонкие трубочки, по которым поступают необходимые вещества, что обеспечивает способность дентина обновляться.
  4. Перитубулярный дентин. Плотное вещество, которым покрыты стенки канальцев.
  5. Склерозированный (прозрачный) дентин. Когда в канальцах скапливается перитубулярное вещество, они сужаются, так как образуется склерозированный дентин, который утолщает стенки канальцев. Это возрастные изменения. Склерозированный – характерное явление при хроническом кариесе.

Одно из важных свойств дентина – способность расти и восстанавливаться за счет одонтобластов (гистогенез). Здесь выделим 3 разновидности дентина:

  1. Первичный. Образуется у малышей еще в материнской утробе.
  2. Вторичный. Момент прорезывания можно назвать началом образования вторичного дентина (или заместительного). Рост вторичного дентина идет в течение всей жизни.
  3. Третичный. Этот вид развивается только в экстренных условиях – при агрессивном воздействии, воспалении и заболеваниях. Появления дентина третичного – это своеобразная реакция организма на различные изменения (например, для защиты нерва при развивающемся кариесе).

Постоянные жевательные органы начинают развиваться с 5 месяца. Они формируются позади зачатков молочных. Стадии формирования, строение зубов и структура тканей зубов аналогичны молочным.

Противопоказания

Оба препарата не рекомендованы к использованию при индивидуальной непереносимости некоторых растительных компонентов, входящих в их химический состав. Чаще всего встречается аллергическая реакция на растения из рода Asteracae, например, ромашка или же арника.

Оба препарата используют при терапевтическом лечении таких заболеваний как:

Добавить комментарий